

Optimal sequencing of EGFR Mutation-Driven NSCLC

Vasilis Ramfidis MD, MSc

Medical Oncologist

Oncology Unit, 3rd Department of Medicine Sotiria General Hospital, Greece

University of Athens Medical School

29 November 2019

The therapeutic landscape is changing rapidly..

EGFR +: 1st line treatment options

NCCN Guidelines Version 1.2020 Non-Small Cell Lung Cancer

NCCN Guidelines Index Table of Contents Discussion

TARGETED THERAPY FOR ADVANCED OR METASTATIC DISEASE

Which 1st line treatment choice would be the best ..

..what would be the ideal sequencing ?

Choosing the right sequencing

TKIs are standard upfront

TKIs vs chemotherapy ?

			RR (%)		PFS (mo)		OS (mo)	
	ΤΚΙ	Study	ΤΚΙ	Chemo	TKI	Chemo	TKI	Chemo
	Gefitinib	IPASS ^{1,2}	71	47	9.5	6.3	21.6	21.9
	Gefitinib	F-Signal ³	55	46	5.8	6.4	22.3	22.9
	Gefitinib	WJTOG ⁴	62	32	9.2	6.3	30.9	NR
	Gefitinib	NEJ002 ^{5,6}	73	31	10.8	5.4	27.7	26.6
2 s	Erlotinib	EURTAC ⁷	58	15	9.7	5.2	19.3	19.5
	Erlotinib	ENSURE ⁸	63	34	11.0	5.5	26.3	25.5
*1	Erlotinib	OPTIMAL ^{9,10}	83	36	13.7	4.6	22.8	27.2
	Afatiniba	LL3 ^{11,12}	56	23	13.6	6.9	.6	28.2
•	Afatiniba	LL6 ^{12,13}	66	23	110	ritV	.6	23.5
				TKIS	superio			

Choosing the right sequencing

TKIs are standard upfront

Not ALL TKIs are not the same: *Activity against EGFR mutations*

Not ALL TKIs are not the same: Antitumor Activity 1st vs 2nd generation TKI

 Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive NSCLC (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial

Not ALL TKIs are not the same: Antitumor Activity 1st vs 2nd generation TKI

ARCHER 1050: Dacomitinib vs Gefitinib (excluding CNS metasases)

Not ALL TKIs are not the same:

Antitumor Activity 1st vs 3rd generation TKI

FLAURA DOUBLE-BLIND STUDY DESIGN

OS was a key secondary endpoint

- Final OS analysis planned for when approximately 318 death events had occurred
- For statistical significance, a p-value of less than 0.0495, determined by O'Brien-Fleming approach, was required
 - Alpha spend for interim OS analysis was 0.0015
- At data cut-off, 61 patients (22%) in the osimertinib arm and 13 patients (5%) in the comparator arm were ongoing study treatment

UNCONTROLLED COPY

PRIMARY ANALYSIS: PROGRESSION-FREE SURVIVAL

FINAL ANALYSIS: OVERALL SURVIVAL

BARCELON

OVERALL SURVIVAL ACROSS SUBGROUPS

BARCELONA 2019

Hazard ratio <1 implies a lower risk of death on osimertinib

*Local or central test; †Result missing for 36 patients in the osimertinib arm and 37 patients in the comparator EGFR-TKI arm

PATIENTS REMAINING ON STUDY TREATMENT AND TIME TO FIRST SUBSEQUENT TREATMENT OR DEATH

1.0

Patients remaining on study treatment

- Osimertinib (n=279) Probability of no first subsequent therapy or death 0.9 - Comparator EGFR-TKI (n=277) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 3 ٩ 12 15 18 21 24 27 30 No. at risk Time from randomisation (months) Osimertinib 279 255 235 212 185 166 157 136 125 112 90 271 100 79 57 277 249 222 195 153 123 96 76 58 45 39 35 31 28 Comparator EGFR-TKI

Time to first subsequent treatment*

Time to first subsequent therapy or death	Events	Median, months (95% CI)
Osimertinib	194	25.5 (22.0, 29.1)
Comparator EGFR-TKI	242	13.7 (12.3, 15.7)
HR (95% CI)	0.478	8 (0.393, 0.581) p<0.0001

HR (95% CI) UNCONTROLLED COPY

Data cut-off: 25 June 2019 Time from the date of randomisation to the earlier of the date of anti-cancer therapy start date following study drug discontinuation or death

SECOND-LINE TREATMENT FOLLOWING PROGRESSION

Of the 180 patients in the comparator EGFR-TKI arm who received a first subsequent treatment,
85 patients (47%) crossed over to osimertinib (31% of all patients randomised from the comparator EGFR-TKI arm)

UNCONTROLLED COPY

Data cut-off: 25 June 2019

*Refers to those patients who did not receive either chemotherapy or an EGFR-TKI; †The majority of patients who received cytotoxic chemotherapy received a platinum-based chemotherapy regimen FST, first subsequent treatment

Not ALL TKIs are not the same: Toxicity profile

	LUX-Lung 7 ^{1,2}		ARCHER 1050 ³		FLAURA ⁴	
	Afatinib (n=160)	Gefitinib (n=159)	Dacomitinib (n=227)	Gefitinib (n=225)	Osimertinib (n=279)	Erlotinib or gefitinib (n=277)
Treatment discontinuation rate	6.2%	6.3%	9.7%	6.7%	10%	14%
Most common Grade ≥3 AEs	Diarrhoea 12% Rash/acne 9%	Liver enzyme elevation 9% Rash/acne 3%	Acne 14% Diarrhoea 8% Paronychia 7%	Liver enzyme elevation 12% Dyspnoea 3%	Diarrhoea 2% Decreased	Rash/acne 7%
				PROMs i	niave	

Choosing the right sequencing

TKIs are standard upfront

Biology drives

sequence

Biology drives sequencing: Mechanisms of resistance After 1st or 2nd generation TKI

Biology drives sequencing: Mechanisms of resistance After 1st or 2nd generation TKI

Patients in the population

Biology drives sequencing: *Mechanisms of resistance After osimertinib*

Amp = amplification; *BRAF* = v-Raf murine sarcoma viral oncogene homolog B; CAST = calpastatin; *CCND1* = cyclin-D1; *CCNE1* = cyclin-E1; *CDK6* = cyclin-dependent kinase 6; *CDKN2A* = cyclin-dependent kinase inhibitor 2A; EGFR = epidermal growth factor receptor; *ERC1* = ELKS/Rab6-interacting/CAST family member 1; fs = frameshift; *HER2* = human epidermal growth factor receptor 2; *MET* = met protooncogene (hepatocyte growth factor receptor); *NTRK1* = neurotrophic tyrosine kinase receptor 1; *PIK3CA* = phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha; *RET* = rearranged during transfection proto-oncogene; *TPM3* = tropomyosin 3.

^aAmplification events may be underrepresented in plasma analyses.

66 Papadimitrakopoulou V et al. Presented at: ESMO Congress; October 19-23, 2018; Munich, Germany.

Choosing the right sequencing

TKIs are standard upfront

Biology drives

sequence

Thoughts & concerns

CNS metastases

CN T79 ran Tony M Hye R Vassili	S response to osimer OM-positive advance domized Phase III tria Mok ¹ , Myung-Ju Ahn ² , Ji-Youn Han ³ , Jin Xyun Kim ⁶ , Rachel Hodge ⁷ , Dana Ghiorg iki A Papadimitrakopoulou ¹⁰ , <u>Marina Chia</u> Laboratory in Oncology in South China, Sir YK Pao Centre for Cancer, g Kong: ² Samsung Medical Centre, Sungkyunkwan University School of altonal Cancer Center, Goyang, Republic of Korea; ⁴ Catholic University cal Research and Innovation, Kobe, Japan; ⁶ Department of Internal Medical Metricine, Sourd Republic of Korea; ⁴ Catholic University cal Research and Innovation, Kobe, Japan; ⁶ Department of Internal Medical Metricine, Sourd Republic of Korea; ⁴ Catholic University cal Research and Innovation, Kobe, Japan; ⁶ Department of Internal Metricine Metricine, Sourd Republic of Korea; ⁴ Catholic University cal Research and Innovation, Kobe, Japan; ⁶ Department of Internal Metricine Metricine, Sourd Republic of Korea; ⁴ Catholic University and Cancer Center, Goyang, Republic of Korea; ⁴ Catholic University cal Research and Innovation, Kobe, Japan; ⁶ Department of Internal Metricine Metricine, Sourd Republic of Korea; ⁴ Catholic University and Cancer Center, Goyang, Republic of Korea; ⁴ Catholic University and Cancer Center, Goyang, Republic of Korea; ⁴ Catholic University and Cancer Center, Goyang, Republic of Korea; ⁴ Catholic University and Cancer Center, Goyang, Republic of Korea; ⁴ Catholic University and Cancer Center, Goyang, Republic of Korea; ⁴ Catholic University and Center Center, Center (Center Center), ⁴ Center (Center), ⁴ Center, ⁴ Cente			
Institute, C Neck Medi Departmer *Former er		Osimertinib 80mg n=30	Chemotherapy n=16	
RESENTED AT: f līdes are the prop	CNS ORR (95% CI)	70% (51,85)	31% (11, 59)	
	Odds ratio (95% CI)	5.13 (1.44, 20.64)	;p=0.015	
	Median time to response, weeks	6.1	6.1	
	Median DoR, months (95% CI)	8.9 (4.3, NC)	5.7 (NC, NC)	
	DCR (95% CI)	93% (78,99)	63% (35,85)	

OVERALL SURVIVAL ACROSS SUBGROUPS

BARCE 2019

Subgroup	Favours osimertinib	Favours comparator EGFR-TKI	HR	95% CI	
Overall (n=556) Log-rank (primary) Unadjusted Cox PH			0.799 0.789	0.641, 0.996 0.634, 0.983	
Sex Male (n=206) Female (n=350)	⊢ _ ●-	 	0.794 0.786	0.554, 1.135 0.595, 1.037	
Age at screening <65 years (n=298) ≥65 years (n=258)	⊢_ ●		0.723 0.873	0.539, 0.969 0.627, 1.215	
Race Asian (n=347) Non-Asian (n=209)		• •	0.995 0.542	0.752, 1.319 0.378, 0.772	
Smoking history Yes (n=199) No (n=357)	⊢ _		0.699 0.848	0.485, 1.002 0.644, 1.118	
CNS metastases at trial entry Yes (n=116) No (n=440)	⊢ ●		0.832 0.788	0.530, 1.298 0.613, 1.014	
0 (n=228) 1 (n=327)	⊢● ⊢_●1	 -	0.927 0.699	0.629, 1.366 0.535, 0.913	
EGFR mutation at randomisation* Ex19del (n=349) L858R (n=207)		•	0.679 0.996	0.509, 0.904 0.708, 1.404	
EGFR mutation by circulating tumour DNA [†] Positive (n=359) Negative (n=124)	⊢ ● −−		0.773 0.719	0.601, 0.995 0.374, 1.359	
	0.1 0.2 0.3 0.4 0.6 0.8 1 HR for dea	1 1 1 1 1 1 1 1 1 1			
congress	UNCONTROLLEI	D COPY		Data cut-off:	: 25 June 2019

Hazard ratio <1 implies a lower risk of death on osimertinib

*Local or central test; †Result missing for 36 patients in the osimertinib arm and 37 patients in the comparator EGFR-TKI arm

Can we make EGFR TKIs better ?

KH¹³, Moro-Sibilot D¹⁴, Enatsu S¹⁵, Zimmermann A¹⁶, Frimodt-Moller B¹⁷, Visseren-Grul C¹⁸, Reck M¹⁹; RELAY Study Investigators.

What about beyond TKIs?

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC

M.A. Socinski, R.M. Jotte, F. Cappuzzo, F. Orlandi, D. Stroyakovskiy, N. Nogami, D. Rodríguez-Abreu, D. Moro-Sibilot, C.A. Thomas, F. Barlesi, G. Finley, C. Kelsch, A. Lee, S. Coleman, Y. Deng, Y. Shen, M. Kowanetz, A. Lopez-Chavez, A. Sandler, and M. Reck, for the IMpower150 Study Group*

This article was published on June 4, 2018, at NEJM.org.

DOI: 10.1056/NEJMoa1716948 Copyright © 2018 Massachusetts Medical Society.

Atezolizumab in the 1st line setting

• **OS:** 19.2m vs 14.7m *p*=0.0164 (regardless PDL1)

OS in Key Subgroups (Arm B vs Arm C)

Median OS, mo Subgroup n (%)^a Arm B Arm C 0.70 PD-L1–High (TC3 or IC3) WT 136 (20%) 25.2 15.0 0.80 PD-L1–Low (TC1/2 or IC1/2) WT 226 (32%) 20.3 16.4 . 0.82 14.1 PD-L1–Negative (TC0 and IC0) WT 339 (49%) 17.1 Liver Metastases WT 94 (14%) 13.2 9.1 0.83 No Liver Metastases WT 602 (86%) 19.8 16.7 0.76 000 (4000/ I (Including EOF WILLY 0.54 104^b (13%) 17.5 EGFR/ALK+ only NF 696 (87%) ITT-WT 19.2 14.70.2 1.0 2.0 Hazard Ratio^c NE. not estimable. In favor of Arm B: In favor of Arm C: ^a Prevalence % for PD-L1 IHC and liver metastases subgroups out of atezo + bev + CP bev + CP ITT-WT (n=696); prevalence of ITT, EGFR/ALK+, and ITT-WT out of ITT (n=800). ^b One patient had EGFR exon 19 deletion and also tested ALK positive per central lab.

° Stratified HR for ITT and ITT-WT; unstratified HR for all other subgroups. Data cutoff: January 22, 2018

#ASCO18 Slides are the property of the authar, permission required for reuse.

PRESENTED BY: Dr. Mark A. Socinski

Addition of Bevacizumab to Atezolizumab and Chemotherapy Prolongs Survival of *EGFR/ALK*+ Patients^a

Arm B^b vs Arm C

PRESENTED AT: 2018 ASCO ANNUAL MEETING

#ASCO18 Slides are the property of the author permission required for reuse.

PRESENTED BY: Dr. Mark A. Socinski

To take home...

To take home..

•Starting with 1st or 2nd gen EGFR TKIs:

Physicians are familiar with 1st & 2nd gen EGFR-TKIs

- If patients develop T790M then sequencing with 3rd gen
 - **Cons**: 40-60% of patients develop T790M that cannot be predicted
 - 30-40% of patients don't have a chance to receive 2nd line treatment

Starting with 3rd gen EGFR TKIs:

- OS benefit at 38.6 months
- Better CNS penetration and efficacy in CNS metastases
- Better PFS in patients whom will not develop T790M
- Cons: Resistance mechanism
- •What next if patients fail 3rd gen EGFR TKI upfront ?

Biology is the key..

Thank you for your attention..