Optimization of adjuvant therapyhormone receptor negative (N0-N1) breast cancer

> Timur Ceric MD. PhD Clinical Centre Sarajevo University Oncology Deparpment Bosnia Herzegovina

Breast cancer—How can we make a difference?

- Identifying who may be at higher risk for developing breast cancer
 - Genetic testing: Who needs it, and what to test for?
- Increasing the chance of cure for early stage breast cancer
 - Adjuvant chemotherapy: Who needs it? and who doesn't?
 - Adjuvant endocrine therapy: How long is long enough?

BREAST CANCER

Adjuvant chemotherapy in early breast cancer Benefit / Risk Balance

Lessons learned from 3 decades of clinical trials

...AND SOCIO-ECONOMIC BURDEN

ST. GALLEN DEFINITIONS OF RISK

Other similar guidelines exist : NCCN, ESMO,...

Systemic therapy (drugs) early stage diseaserationale

Early stage disease (stage I, II, III)

- Given after (or before) surgery for finite duration
- Kill micro-metastatic disease
- Primary goal is to reduce chances of future breast cancer relapse and reduce chances of eventual death from breast cancer

Adjuvant systemic therapy

Types

- Endocrine therapy
 - Tamoxifen
 - Aromatase inhibitors
 - Ovarian suppression
- Chemotherapy
 - Adriamycin, Cyclophosphamide, Paclitaxel, Docetaxel, 5-FU
- Her2 monoclonal antibodies (Ab)
 - Trastuzumab
 - Pertuzumab

Who gets what? And when?

Adjuvant chemotherapy: How do we decide who is 'high risk'?

• CLINICAL/PATHOLOGICAL/GENOMIC FACTORS ARE BEST USED IN COMBINATION. • Responsiveness is a continuum. • PATIENT PREFERENCE!

In favor of adjuvant chemotherapy

- ER negative
- Ductal histology
- Grade 3
- High proliferation
- High uPA and PAI1
- Basal and HER2 positive
- High MammaPrint[®] or Oncotype DX[®] or GGI

Against adjuvant chemotherapy

- ER positive
- Lobular histology
- Grade 1
- Low proliferation
- Low uPA and PAI1
- Luminal A
- Low MammaPrint[®] or Oncotype DX[®] or GGI

Breast Cancer | Anatomical LN Involvement

Without Systemic Treatment <u>1-3 LN: 25-35% recurrence rate</u> <u>4-9 LN: 25-55% recurrence rate</u> >10 LN: >70% recurrence rate

Oncology

Clinics Victoria

Quiet et al. Natural History of node positive breast cancer: the curability of small cancers with a limited number of positive nodes. J Clin Oncol. 1996; 14:3105-3111

Triple Negative (TNBC): The Basics...

- Defined as negative for ER/PR and Her2/neu
- 20% of breast cancers worldwide
 - 200,000 cases per year
- Higher incidence in age <40, and AA race
- Up to 20% harbor BRCAmutation
- Higher grade, present aggressively with rapid growth
- Worse prognosis compared to other breastcancers

Incidence of TNBC

PRESENTED AT: ASCO ANNUAL MEETING '16 Slides are the property of the author. Permission required for reuse.

[©] Presented by:

SEER Cancer Statistics Review

Presented By Carey Anders at 2016 ASCO Annual Meeting

Triple negative: Natural history

Recurrence Patterns of TNBC

TNBC recurrences more likely to be Visceral - involving Lung and brain; less likely Bone only recurrences

No target to chase? Rely on chemotherapy

Preferred single agents: Anthracyclines Doxorubicin Pegylated liposomal doxorubicin Taxanes Paclitaxel Anti-metabolites Capecitabine Gemcitabine Other microtubule inhibitors Vinorelbine Eribulin Other single agents: Cyclophosphamide Carboplatin Docetaxel Albumin-bound paclitaxel Cisplatin Epirubicin Ixabepilone

Chemotherapy combinations:

- CAF/FAC (cyclophosphamide/doxorubicin/fluorouracil)
- FEC (fluorouracil/epirubicin/cyclophosphamide)
- AC (doxorubicin/cyclophosphamide)
- EC (epirubicin/cyclophosphamide)
- · CMF (cyclophosphamide/methotrexate/fluorouracil)
- Docetaxel/capecitabine
- GT (gemcitabine/paclitaxel)
- Gemcitabine/carboplatin
- Paclitaxel/bevacizumab³

Preferred first-line agents for HER2-positive disease:

- Pertuzumab + trastuzumab + docetaxel (category 1)⁴
- Pertuzumab + trastuzumab + paclitaxel⁴
- Other agents for HER2-positive disease:
- Ado-trastuzumab emtansine (T-DM1)
- Trastuzumab + paclitaxel ± carboplatin
- Trastuzumab + docetaxel
- Trastuzumab + vinorelbine
- Trastuzumab + capecitabine

Agents for trastuzumab-exposed HER2-positive disease:

- Lapatinib + capecitabine
- Trastuzumab + capecitabine
- Trastuzumab + lapatinib (without cytotoxic therapy)
- Trastuzumab + other agents^{4,5,6}

¹There is no compelling evidence that combination regimens are

Meta-analysis: Long-term Outcomes With Polychemotherapy Regimens for EBC

Rough estimate: ~ 35% PRR in BC mortality for anthracycline/taxane regimen

"Little affected by age, nodal status, tumor diameter or differentiation (moderate or poor; few were well differentiated), estrogen receptor status, or tamoxifen use"

NSABP B-36: AC vs FEC-100 in Node-Negative Breast Cancer

- Primary endpoint: DFS
- Secondary endpoints: OS, AEs, symptoms, QoL

Jacobs SA, et al. SABCS 2014. Abstract S3-02.

AC vs FEC-100 in Node-Negative Breast Cancer (NSABP B-36): DFS and OS

Phase III ECOG 1199: Adjuvant Paclitaxel vs Docetaxel, both q3w and qw, in EBC

Sparano J, et al. N Engl J Med. 2008;358:1663-1671.

Adjuvant Paclitaxel vs Docetaxel (E1199): Secondary Comparison of DFS and OS

Both paclitaxel qw and docetaxel q3w were superior to paclitaxel q3w

Adjuvant Paclitaxel vs Docetaxel (E1199): Results in Triple-Negative Pts

 Exploratory analysis: paclitaxel qw superior to q3w in triple-negative breast cancer

Sparano J, et al. SABCS 2014. Abstract S3-03.

Adjuvant TC vs EC→T in High-Risk HER2-Negative Early Breast Cancer: Background

- Role of anthracycline-containing regimens for pts with early BC still debated
 - EBCTCG meta-analysis: reduced BC mortality with anthracycline + taxane regimens, increased cardiac mortality with anthracyclines^[1]
 - USOR 9735: superior DFS and OS with TC x 4 vs AC x $4^{[2]}$
 - ABC joint analysis: improved iDFS with taxane + AC regimens vs TC x $6^{[3]}$
- PlanB: prospective, randomized, open-label phase III trial of TC vs EC→T in HER2-negative pts with early BC
 - Current analysis reports final 5-yr results^[4]

PlanB: Study Design

All agents given IV Day 1 Q3W. RT per national guidelines.

*High-risk disease included those with $pT \ge 2$, grade 2-3, uPA/PAI-1 high, HR-, or young age (≤ 35 yrs of age). [†]In protocol amendment after 263 pts enrolled, HR+ pts with 0-3 LN and RS ≤ 11 excluded from randomization, given endocrine therapy per national guidelines. HR+ pts with 0-3 LN and RS ≥ 11 or ≥ 4 LN randomized per original trial design.

- Primary endpoint: DFS, noninferiority margin: 4.4%
- Secondary endpoints: safety, OS
- Translational subprotocol: prognostic impact of RS vs clinicopathology, outcome in pts with RS ≤ 11 treated with endocrine therapy

Harbeck N, et al. ASCO 2017. Abstract 504.

PlanB: DFS

 Difference in DFS within margin of noninferiority from original trial design

Harbeck N, et al. ASCO 2017. Abstract 504. Reproduced with permission.

PlanB: OS

Harbeck N, et al. ASCO 2017. Abstract 504. Reproduced with permission.

PlanB: Conclusions

- In pts with clinically high-risk or genomically intermediate-/high-risk HER2negative early BC, TC noninferior to EC->T for DFS
 - Similar 5-yr DFS and OS for TC vs EC \rightarrow T
 - No subgroup-specific benefit with anthracycline-containing $EC \rightarrow T$
- Fewer grade 3/4 AEs, dose reductions/cycle delays with TC vs EC→T
- Study investigators conclude 6 x TC represents effective CT option for HER2-negative early BC, evaluation of novel therapeutics needed in subgroup of pts with high-RS tumors
 - Potential overtreatment with CT suggested by prolonged 5-yr DFS in intermediate-RS tumors to be addressed in WSG-ADAPT trial

Maintain full dose density

Women > 70 need more individualized decisions

There is no added benefit to dose escalation in adjuvant treatment Poly-chemotherapy is preferred

Adjuvant! Online for breast cancer (Updated version) used for a standardized approach to "Clinical Risk"

Patient Information

Age:	50	No additional therapy:
Comorbidity:	Average for Age 📃	
ER Status: Tumor Grade: Tumor Size:	Positive Grade 3	 72.2 alive in 10 years. 23.5 die of cancer. 4.3 die of other causes.
Positive Nodes:	0 🔹	
Calculate For:	Mortality -	
Adjuvant Ther Horm: Overvia Chemo: Overv	rapy Effectiveness ew 98 (Tamoxifen) • iew 98 (CMF-Like) •	
Chemotherapy: Combined Therap	y: 11 yy: 36	P. Ravdin

Van de Viiver MJ. N Engl J Med 2002: 347 (24):

B.C. CLINICAL OUTCOME PREDICTION 70-gene profiler outperforms St Gallen criteria

Van de Vijver MJ, N Engl J Med 2002; 347 (24): 1999-2009

Levels of evidence for biomarker studies

E.U. GRANT, 6th Framework Programme Coordination: F. Cardoso, M.

Efficacy: CTvs no CTin discordant risk groups Intent-to-treat analysis

Breast cancer is many diseases!

MOLECULAR CLASSIFICATION OF BREAST CANCER

Subtype	Molecular characteristics	Histological characteristics SURROGATES	Biology/treatment	BC subtypes
Luminal A	 Iuminal CK expression resembles normal epithelium cells 	• ER+ • low grade	 indolent behaviour sensitive to hormonal therapy 	
Luminal B	•similar than luminal A	• ER+ (lower expression than in luminal A) • high grade	 more aggressive behaviour than luminal A less sensitive to hormonal therapy than luminal A 	Luminal A/B (65%)
Basal-like	 without expression of ER, PR and HER-2 genes basal CK expression (CK5) expression of growth factors (EGFR, c-kit, HGF, IGF) BRCA disfunction genetic instability 	 " Triple negative" (ER-, PR -, HER 2-) high grade 	 aggressive behaviour sensitive to chemotherapy 	HER2 positive (20% Basal-like (15%)
Her-2 enriched	• amplification of HER-2 gene and overexpression of HER-2 receptor	• HER 2+ • high grade	 aggressive sensitive to anti-HER-2 therapy sensitive to chemotherapy 	

Heterogeneity of TNBC: It is not one disease Different subtypes may have different 'Achilles heels'

Many Approaches Under Evaluation for TNBC in Clinical Trials

Pathway/Drug type	Drugs in development	
DNA repair	PARP inhibitors (olaparib, rucaparib, veliparib), platinum agents (cisplatin, carboplatin)	
PI3K/Akt/mTOR	PI3K inhibitors (buparlisib, taselisib, GDC0941, AZD8186, many others); Akt inhibitors (GDC0068, others), mTOR inhibitors (everolimus, others)	
Androgen (testosterone) signaling	Anti-androgens (bicalutamide, enzalutamide)	
Immune	CTLA4 blockade (ipilumumab), PD1/PD-L1 blockade (nivolumab, pembrolizumab, atezolizumab),	
Antibody-drug conjugates	IMMU-132, SGN-LIV1A, PF06647263, CDX-011	
Cell cycle	Dinaciclib, seleciclib	
Chk1	GDC0575	
Bromodomain	TEN-101, GSK525762	
Heat shock (stress)	Ganetespib, others	
Angiogenesis	Ramucirumab, cedirinib	

Background: The Immune System

Innate Immunity

- Nonspecific, activated quickly in response to a pathogen
- Activates the adaptive response

Adaptive Immunity

- Specific, activated in response to recognition of a specific pathogen
- Includes T-cell stimulation, B-cell antibody production
- Has a memory component

What should happen: tumor-associated antigens recognized by the immune system and destroyed by both innate and adaptive immune mechanisms (including activation of T cells)

What often happens: Tumors evade detection and destruction by the immune system through immune tolerance and acquiring resistance to killing by activated immune cells.

PRESENTED AT: ASCO ANNUAL MEETING '16 Slides are the property of the author. Permission required for reuse.

Why is TNBCa good target for immunotherapy?

- High mutation rate, which can produce neoantigens that induce an immune response
- Increased number of tumor-infiltratinglymphocytes, which can facilitate an immune response
- Higher PD-L1 expression levels, which can inhibit T-cell antitumor responses, as compared with other breast cancer subtypes

BRCAmutation-Cancerrisks

BRCA1-Associated Breast and Ovarian Cancers: Risk to Patients Age 70 Years

BRCA2-Associated Breast and Ovarian Cancers: Risk to Patients Age 70 Years

TNT Trial: First-Line Chemotherapy for TNBC

Primary Endpoint: Objective Response (updated)

Objective Response – gBRCA 1/2 Mutation Status

*Denominator excludes those with no first progression and those not starting crossover treatment

HRD did not predict benefit from carboplatin

In *BRCA* wildtype with *BRCA* gene silencing or low expression, no additional impact of carboplatin

PFS by BRCA mutation status

	BRCA 1/2 mutated	BRCA 1/2 not mutated
D	4.4 mo (1.9-7.0)	4.6 mo (4.2-5.5)
С	6.8 mo (4.6-8.5)	2.9 mo (2.3-4.2)

Tutt A, et al. Nat Med. 2018;24(5):628-637.

Prognostic Implications: Neoadjuvant Therapy for TNBC

- Among the highest pCR rates are seen in TNBC
- pCR associated with excellent outcomes

Cortazar P, et al. Lancet. 2014;384(9938):164-172. Symmans WF, et al. J Clin Oncol. 2017;35(10):1049-1060. Yee D, et al. Cancer Res. 2018;78(4 Suppl): Abstract GS3-08.

- The bottom line:
 - Carboplatin improves pCR in sporadic TNBC
 - Less benefit in patients with gBRCA mutations when added to standard chemotherapy
 - Survival benefit remains uncertain
 - May be a replacement for anthracyclines in patients with an excellent response
- No evidence that any known marker identifies a group that will benefit other than *BRCA* germline mutations
 - HRD has not yet defined a group of patients who benefit more from DNA-damaging agents
 - Higher response in BRCA mutation carriers in MBC (TNT) is not powered to correlate with survival

Breast Cancer and PI3K/AKT Pathway

The PI3K/AKT pathway is one o the most frequently altered pathways in breast cancer and is key for survival and growth of tumors

AKT can be activated by:

- Loss of function of negative regulators:
 - PTEN
 - INPP48
 - PHLPP
 - PP2A
- Gain of function of positive regulators:
 - **PI3K**
 - AKT
 - Receptor tyrosine kinases (HER2)
- Therapy-induced survival response
 - Chemotherapy
 - Hormone therapy

Yap TA, et al. *Curr Opin Pharmacol.* 2008;8(4):393-412. Manning BD, et al. *Cell.* 2017;169(3):381-405. Dent R, et al. *J Clin Oncol.* 2018;36(suppl): Abstract 1008.

4SCO18

Slides are the property of the author permission required for reuse.

PI3KCA/AKT1/PTEN Altered

PI3KCA/AKT1/PTEN Not Altered

CI = confidence interval; HR = hazard ratio; mths = months; PFS = progression-free survival

#ASCO18 Slides are the property of the author, permission required for reuse.

Schmid P, et al. J Clin Oncol. 2018;36(suppl): Abstract 1007.

Targeting MEK

- Increased activation of the MAPK pathway is associated with:
 - Reduced TILS, poorer tumor-specific immune response
 - Upregulation of MAPK confers resistance to taxanes
- This pathway is altered in many TNBC
 - Adding MEK inhibitor to taxane increased the sensitivity of breast cancer cells to taxanes
- Cobimetinib
 - Potent highly selective MEK inhibitor
 - COLET (NCY02322814), n = 90 in randomized phase II multicohort trial
 - Cobimetinib plus paclitaxel as first-line therapy for mTNBC
 - PFS 3.8 mo vs 5.5 mo (HR 0.73; 0.43-1.24, P = .2); ORR 21% vs 38%
 - Next stage in combination with immunotherapy ongoing
 - Toxicity is GI and hematologic

Brufsky A, et al. Cancer Res. 2018;78(4 Suppl): Abstract P5-21-01.

Targeting the Androgen Receptor

- **Bicalutamide in AR+ TNBC** •
 - 452 screened, 12% AR+
 - 28 on study, CBR 21%
- Enzalutamide in AR+ TNBC •
- 118 enrolled, 78 evaluable •
 - CBR 16 weeks: 25% in ITT, 33% in the evaluable pts

Kono M, et al. JAMA Oncol. 2017;3(9):1266-1273.

A. Prescreened population. 79% of TNBC tissue expressed some AR; 55% of TNBC tissue expressed AR ≥ 10% 404 tissue samples collected 368 analyzed via 2 antibodies 289 (79%) samples expressed some AR in tumor 203 (55%) samples expressed AR in ≥ 10% of tumor

Gucalp A, et al. Clin Cancer Res. 2013;19(19):5505-5512. Traina TA, et al. J Clin Oncol. 2018;36(9):884-890.

Overview of TNBC

HR, homologous recombination; HRD, homologous recombination deficiency; IHC, immunohistochemistry

Chan JJ, et al. J Oncol Pract. 2018;14(5):281-289.

Conclusions: 'Take home' points

- Identifying 'at risk' populations for breast cancer has become increasingly complex...more genes=more questions.
 Knowledge/research must catch up to technology!
- Increasing use molecular testing-- prognostic and predictive tools, to customize adjuvant therapies to each individual. No two cancers are the same!
- Molecular characterization of metastatic breast cancer has allowed us to identify, and better target, various subtypes of breast cancer.
 Promising drugs have been approved---with many others on the horizon!