

Optimal sequence of ALK inhibitors for ALK or ROS1 Mutant non-small cell lung cancermarathon or sprint while choosing upfront TKI

Mor Moskovitz, MD Rambam Health Care Campus Haifa, Israel

Lung Cancer- The leading cause of cancer related death world-wide!

*Excludes basal cell and squamous cell skin cancers and in situ carcinoma except urinary bladder

©2015, American Cancer Society, Inc., Surveillance Research

Most patients end up with advanced disease, and treated with systemic therapy

Schiller JH, et al. N Engl J Med 2002;346:92–8

Two subtypes of NSCLC patient

For those patients- tissue is the issue!

What are the common targets in Adenocarcinoma of the Lung?

EGFR = epidermal growth factor receptor ALK = anaplastic lymphoma kinase

ALK characteristics

Incidence of ALK+ NCSLC is Relatively Uniform across Ethnicities

- Younger and more male patients
- Higher incidence of thrombo-embolic events

Barlesi, et al. ASCO 2013; 2. Johnson, et al. ASCO 2013; 3. Sun, et al. J Clin Oncol 2010

Zer, A., Moskovitz, M., Hwang, D.M., Hershko-Klement, A., Fridel, L., Korpanty, G.J., Dudnik, E., Peled, N., Shochat, T., Leighl, N.B. and Liu, G., Shepherd F, 2017. ALK-Rearranged Non–Small-Cell Lung Cancer Is Associated With a High Rate of Venous Thromboembolism. Clinical lung cancer, 18(2), pp.156-161.

How to diagnose ALK Rearrangement?

50% of ALK rearrangements compare to IHC and NGS

Immunohistochemistry-

- Less expensive
- faster

ROS1 rearrangement in NSCLC

- Found in 1% on Adenocarcinomas of the lung
- Younger patients, non-smokers
- Diagnosed with IHC (and FISH break-apart)
- No data on the risk of thromboembolic events, but clinical observations suggest increased risk

Figure 3. ROS1 gene rearrangement in lung adenocarcinoma using a break-apart FISH assay, characterized by separation of red and green probes for ROS1 gene in the turnor cells

Response to Crizotinib in ROS-1 Patients

Bergethon, J Clin Oncol 2012

When diagnosing ALK rearrangement...

Because there are so many treatment options...and significant OS benefit

Pills not shown in actual size

Lorlatinib, Ensartinib and many more in clinical trials...

How did it all start?

Treatment for ALK +ive NSCLC- the most rapid clinical translation!

Crizotinib is the 1st drug approved for ALKrearrangement based on phase I trial

Fig. 1: Response to ALK Inhibition—(A) Best response of patients with ALK-positive tumors who were treated with crizotinib, as compared with pretreatment baseline. Numbers along the x axis indicate arbitrarily assigned subject numbers from 1 to 79. The bars indicate the percent change in tumor burden from baseline. (B) The results of CT with coronal reconstruction in a representative patient at baseline (left) and after two cycles of therapy (right). This patient had undergone previous left lower lobectomy. ©Massachusetts Medical Society. Reprinted with permission from Kwak EL, et

Side effects

- Hepatotoxicity
- Pneumonitis
- Visual disturbance
- Nausea
- Edema

Crizotinib was assessed in 1st and 2nd line ALK-positive NSCLC in RCT vs. chemo

Crizotinib as 2nd line in ALK+ patients (PROFILE 1007) Crizotinib as 1st line in ALK+ patients (PROFILE 1014)

Median duration of treatment: Crizotinib, 10.9 months; chemotherapy, 4.1 months

Shaw AT et al. N Engl J Med 2013;368:2385-2394.

Solomon BJ et al. N Engl J Med 2014;371:2167-2177. PROFILE 1014

Final Primary OS Analysis (ITT Population) PROFILE 1014

^a2-sided p-value from the log-rank test stratified by ECOG PS, race, brain metastases.

Clinical benefit of continuing ALK inhibition with crizotinib beyond initial disease progression in patients with advanced *ALK*-positive NSCLC

S.-H. I. Ou^{1*,†}, P. A. Jänne^{2,†}, C. H. Bartlett³, Y. Tang⁴, D.-W. Kim⁵, G. A. Otterson⁶, L. Crinò⁷, P. Selaru⁴, D. P. Cohen⁴, J. W. Clark⁸ & G. J. Riely⁹ *Annals of Oncology* 25: 415–422, 2014

Site of initial disease progression (New lesions and/or non-target lesions)

Site of disease progression	All patients (N = 138) (%)	CBPD (N=78) (%)	No CBPD (N = 60) (%)	
Brain	<mark>57 (41)</mark>	<mark>40 (51)</mark>	<mark>17 (28)</mark>	•
Liver	<mark>34 (25)</mark>	<mark>12 (15)</mark>	<mark>22 (37)</mark>	•
Lung	22 (16)	10 (13)	12 (20)	Score
Bone	13 (9)	8 (10)	5 (8)	ESAS
Pleural effusion cavity	11 (8)	3 (4)	8 (13)	
Lymph node	7 (5)	2 (3)	5 (8)	
Other	30 (22)	10 (13)	20 (33)	
				-

Mean symptom burden during treatment with ALK inhibitors

Treatment beyond disease progression: ALK inhibitors in *ALK*-rearranged advanced NSCLC Mor Moskovitz, Priscilla Matthews, Alexandra Pavel, Dongyang Yang, Brendon Morganstein, Wei Xu, Penelope Bradbury, Geoffrey Liu, Frances Shepherd, Natasha B. Leighl Annals of Oncology 28.suppl_5 (2017).

The NCCN suggest consider treatment past progression!

Tumor Responses to Crizotinib in ROS1-Rearranged Non–Small-Cell Lung Cancer.

National NCCN Cancer Network®

Comprehensive NCCN Guidelines Version 3.2018 NCCN Guidelines Table of Cor Non-Small Cell Lung Cancer Discu ROS1 REARRANGEMENT POSITIVE^{hh} FIRST-LINE THERAPY^{mm} SUBSEQUENT THERAPY^{mm}

See Initial cytotoxic therapy options^{tt} Adenocarcinoma (NSCL-27) Squamous cell carcinoma (NSCL-28) ROS1 |Crizotinibⁿⁿ (preferred) rearrange Progression or positive Ceritinibnr

Shaw AT et al. N Engl J Med 2014;371:1963-1971.

The CNS- A sanctuary site

- 30-40% of ALK rearranged patients have brain mets at initial diagnosis.
- CNS is one of the most common sites of relapse on Crizotinib- first site of disease progression in 46% of patients!
- Among ALK rearranged patients entering trials with next-generation ALK TKIs, rates of CNS mets approaching 60%
- Brain metastases impact quality of life

What did we do with brain metastases in the past?

- Radiotherapy- whole brain, stereotactic radiotherapy
- Changing crizotinib schedule

CASE REPORT

Effective Crizotinib Schedule for Brain Metastases in ALK Rearrangement Metastatic Non–Small-Cell Lung Cancer

Nir Peled, MD, PhD,* Leor Zach, MD,† Ori Liran, MSc,* Maya Ilouze, PhD,* Paul A. Bunn Jr., MD,‡ and Fred R. Hirsch, MD, PhD‡

FIGURE 1. Brain MRIs (axial t1 with contrast images) in February, May, and July 2013. Brain metastases were diagnosed after 20 months of crizotinib therapy (250 mg twice daily). Whole-brain radiotherapy (3000 cGy/10fr) was administered while crizotinib was continued in standard dose (except for the radiation period). Follow-up MRI (May 2013) showed lack of response. Then, crizotinib was rescheduled for 500 mg X1/day, with a dramatic response 2 months later. MRI, magnetic resonance imaging.

Resistance pathways to EGFR TKI

eas

Resistance – mostly due to ALK secondary mutationand more...

Crizotinib: Acquired Resistance

Target-Independent Mechanisms	Reference
EGFR activation	Katayama et al. Sci Transl Med 2012
MAPK pathway reactivation	Doebele et al. <i>Clin Cancer Res</i> 2012
c-KIT amplification and SCF overexpression	Katayama et al. Sci Transl Med 2012
SRC activation	Crystal et al. Science 2014
IGF-1R activation	Lovly et al. Nat Med 2014
Ligand-mediated HER2/3 activation	Wilson et al. Cancer Cell 2015
Protein kinase C activation	Wilson et al. Cancer Cell 2015
Small cell transformation (rare)	Fujita et al. J Thorac Oncol 2016

PRESENTED AT: A SCO ANNUAL MEETING '17 #ASC 017 Presented by: Justin F. Gainor Slides are the property of the author. Permission required for reuse.

Drug Sensitivity

D1203N+E1210K

IC₅₀ > 50 < 200 nmol/L

						IC ₅₀ ≥ 200 nmol/L
		Cellular ALK p	hosphorylation	mean IC ₅₀ (nm	iol/L)	
	Mutation status	Crizotinib	Ceritinib	Alectinib	Brigatinib	Lorlatinib
	Parental Ba/F3	763.9	885.7	890.1	2774.0	11293.8
	EML4–ALK V1	38.6	4.9	11.4	10.7	2.3
f	<i>EML4–ALK</i> C1156Y	61.9	5.3	11.6	4.5	4.6
•	<i>EML4–ALK</i> I1171N	130.1	8.2	397.7	26.1	49.0
ach	EML4–ALK I1171S	94.1	3.8	177.0	17.8	30.4
	<i>EML4–ALK</i> I1171T	51.4	1.7	33.6 ^a	6.1	11.5
,	<i>EML4–ALK</i> F1174C	115.0	38.0 ^a	27.0	18.0	8.0
	<i>EML4–ALK</i> L1196M	339.0	9.3	117.6	26.5	34.0
	<i>EML4–ALK</i> L1198F	0.4	196.2	42.3	13.9	14.8
	<i>EML4–ALK</i> G1202R	381.6	124.4	706.6	129.5	49.9
	<i>EML4–ALK</i> G1202del	58.4	50.1	58.8	95.8	5.2
	<i>EML4–ALK</i> D1203N	116.3	35.3	27.9	34.6	11.1
	<i>EML4–ALK</i> E1210K	42.8	5.8	31.6	24.0	1.7
	<i>EML4–ALK</i> G1269A	117.0	0.4	25.0	ND	10.0
	<i>EML4–ALK</i> D1203N+F1174C	338.8	237.8	75.1	123.4	69.8
	EML4-ALK	153.0	97.8	82.8	136.0	26.6

spectrum o activity to e drugbut still no selection of treatment ased on resistance rofile... D

Different

IC₅₀ ≤ 50 nmol/L

2nd line treatment after Crizotinib resistance

	Ceritinib	Alectinib	Brigatinib
ORR	39-56%	48-50%	45-62%
Median PFS	5.4-6.9 months	8.1-8.9 months	9.2-15.6
Intracranial ORR [†]	36-45%	57-75%	42-67%
Safety Considerations	GI toxicities	Constipation, myalgia	Pulmonary events

Ceritinib- the second ALK TKI

ASCEND-1

Study	Phase	Population	N	ORR	PFS (months)	Intracranial ORR [†]
ASCEND-1	I.	Criz-naïve	83	72%	18.4	75% (N=4)
		Criz-resistant	163	56%	6.9	36% (N=28)
ASCEND-2	II	Criz-resistant [‡]	140	38.6%	5.7	45% (N=20)
ASCEND-3	11	ALKi-naïve	124	58.9%	11.1	59% (N=17)
ASCEND-4	Ш	Treatment-naïve	189	72.5%	16.6	73% (N=22)
ASCEND-5	Ш	Previous chemo and crizotinib	115	39.1%	5.4	NR

But....

Select AEs (>30%)					
Adverse Event	Grade 1-2	Grade 3	Grade 4		
Diarrhea	80%	6%	0%		
Nausea	77%	6%	0%		
Vomiting	57%	4%	0%		
Fatigue	38%	5%	0%		
Abdominal pain	37%	1%	0%		
Decreased appetite	36%	2%	0%		

Significant toxicity!!!

Alectinib- early phases efficacy

Global Phase II (NP28673)

ORR 50%

Adverse Events	North American (NP28761)	Global (NP28673)
Constipation	36%	33%
Fatigue	33%	26%
Myalgia	24%	23%
Peripheral Edema	23%	25%

Phase II Studies: NP28761 and NP28673

CNS: First Place of Progression in 46% of 1L Patients

Alectinib is not a substrate for the drug efflux transporter P-gp3, and is therefore not actively transported out of the brain¹

¹⁴C-labelled Alectinib administration shows similar CSF and Plasma Concentration¹

Alectinib is clinically active in the CNS irrespective of prior radiation²

. Gadgeel, et al. J Clin Oncol 20162. Kodama, et al. Cancer Chemother Pharmacol 2014, 1

Patient case

- 76 y male, diagnosed 10/2015 with NSCLC Adenocarcinoma, stage IIIA
- Resection and adjuvant chemoradio
- 06/2017- metastases in brain and lymph nodes
- Treated with Crizotinib with good systemic response, stable CNS disease
- 11/2017- PD in brain
- 12/2017- started Alectinib

November 2017

February

2018

64%

Brigatinib-next generation ALK inhibitor

Mechanism of Action

- Brigatinib is a tyrosine kinase inhibitor with in vitro activity against multiple kinases including ALK, ROS1, insulin-like growth factor-1 receptor (IGF-IR), and FLT-3, as well as EGFR deletion and point mutations
- It inhibits autophosphorlylation of ALK and ALKmediated phosphorylation of downstream signaling proteins STAT3, AKT, ERK1/2, and S6
- It is also inhibits in vitro proliferation of cell lines expressing EML4-ALK and NPM-ALK fusion proteins

Phase I

Brigatinib- efficacy and safety in the 2nd line

Randomised phase II- ALTAtrial

* 180 mg qd with 7-day lead-in at 90 mg. HR, hazard ratio; NR, not reached; qd, once daily

IRC-assessed median PFS was 9.2 months (95% CI, 7.4–12.8 months) in Arm A and 16.7 months (95% CI, 11.6–NR months) in Arm B

Mechanism of Action

- Brigatinib is a tyrosine kinase inhibitor with in vitro activity against multiple kinases including ALK, ROS1, insulin-like growth factor-1 receptor (IGF-IR), and FLT-3, as well as EGFR deletion and point mutations
- It inhibits autophosphorlylation of ALK and ALKmediated phosphorylation of downstream signaling proteins STAT3, AKT, ERK1/2, and S6
- It is also inhibits in vitro proliferation of cell lines expressing EML4-ALK and NPM-ALK fusion proteins

Intra-cranial response

IASLC 18TH WORLD CONFERENCE ON LUNG CANCER October 15-18, 2017 | Yokohama, Japan

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

WWW.IASLC.ORG

NR, not reached

IRC-Assessed Intracranial Response in Patients With Baseline Brain Metastases

	Patients With Measurable Brain Metastases		
IRC Assessed Efficacy Parameter	Any		
% (95% CI)	Arm A, n=26	Arm B, ^a n=18 67 (41–87)	
Confirmed intracranial ORR	50 (30-70)		
Intracranial disease control rate	85 (65-96)	83 (59-96)	
	Active Bra	ain Lesions	
	Arm A, n=19	Arm B, ^a n=15	
Confirmed intracranial ORR	47 (24-71)	73 (45–92)	
Intracranial disease control rate	84 (60-97)	93 (68-99.8)	

*180 mg qd with 7-day lead-in at 90 mg

- Complete response in patients with only nonmeasurable intracranial CNS metastases at baseline:
 - 7% (4/54) and 18% (10/55) in Arms A and B, respectively

Duration of Intracranial Response in Patients with Measurable Brain Metastases

IASLC 18TH WORLD CONFERENCE ON LUNG CANCER October 15–18, 2017 | Yokohama, Japan

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

WWW.IASLC.ORG

IRC-Assessed Intracranial Response in Patients With Baseline Brain Metastases

	Patients With Measurable Brain Metastases			
IRC Associat Efficacy Parameter	Any			
% (95% CI)	Arm A, n=26	Arm B, ^a n=18		
Confirmed intracranial ORR	50 (30-70)	67 (41-87)		
Intracranial disease control rate	85 (65-96)	83 (59–96)		
	Active Bra	ain Lesions		
	Arm A, n=19	Arm B, ^a n=15		
Confirmed intracranial ORR	47 (24-71)	73 (45–92)		
Intracranial disease control rate	84 (60-97)	93 (68-99.8)		

* 180 mg qd with 7-day lead-in at 90 mg

- Complete response in patients with only nonmeasurable intracranial CNS metastases at baseline:
 - 7% (4/54) and 18% (10/55) in Arms A and B, respectively

ALK+ NSCLC: sequence of crizotinib followed by next generation inhibitor: mOS of 89.6 months

Progression-Free and Overall Survival of Patients With ALK Rearrangement—Positive Non—Small Cell Lung Cancer Treated Sequentially With Crizotinib and Alectinib

Satomi Watanabe,¹ Hidetoshi Hayashi,¹ Kunio Okamoto,² Kimiko Fujiwara,³ Yoshikazu Hasegawa,⁴ Hiroyasu Kaneda,² Kaoru Tanaka,¹ Masayuki Takeda,¹ Kazuhiko Nakagawa¹

Median OS = 89.6 months

www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 13), pp: 21903-21917

Research Paper

Overall survival with crizotinib and next-generation ALK inhibitors in ALK-positive non-small-cell lung cancer (IFCT-1302 CLINALK): a French nationwide cohort retrospective study

Michaël Duruisseaux¹, Benjamin Besse², Jacques Cadranel³, Maurice Pérol⁴, Bertrand Mennecier⁵, Laurence Bigay-Game⁶, Renaud Descourt⁷, Eric Dansin⁸, Clarisse Audigier-Valette⁹, Lionel Moreau¹⁰, José Hureaux¹¹, Remi Veillon¹², Josiane Otto¹³, Anne Madroszyk-Flandin¹⁴, Alexis Cortot¹⁵, François Guichard¹⁶, Pascaline Boudou-Rouquette¹⁷, Alexandra Langlais¹⁸, Pascale Missy¹⁹, Franck Morin¹⁹, Denis Moro-Sibilot¹

Median combined PFS: 17.4 months Median OS: 49.4 months

Median combined PFS: 18.2 months Median OS: 51.1 months

Duruisseaux M, et al. Oncotarget 2017; Gainor JF, et al. Clin Cancer Res 2015; Watanabe S, et al. Clin Lung Cancer 2016

Unmet need in the first line-

- 50% of patients progress within 1 year on treatment with Crizotinib
- CNS is the first site of disease progression in 46% of patients
- A significant portion of patients will not continue 2L treatment (Poor PS)

Presented By Justin Gainor at 2017 ASCO Annual Meeting

ALEX: Investigator Assessed PFS

57% reduction in risk to progression vs. SoC

4

0

ALEX- PFS was improved regardless of CNS metastases status

ALEX: Updated Overall survival is still immature

OS estimate

Updated data cut-off (1 December 2017)

ALEX: Updated Duration of Response

Updated data cut-off (1 December 2017) Investigator assessed NE = not estimable

ALEX: best overall response by baseline CNS metastases (updated analysis)

Patients with measurable and/or non-measurable baseline CNS metastases

Updated data cut-off (1 December 2017)

NCT02075840 Camidge, et al. ASCO 2018

ALEX: Alectinib Significantly Reduced CNS Progression/Appearance

Patients with or without CNS mets at baseline

ALEX: CNS response

Measurable and non-measurable CNS lesions at baseline					
	Crizotinib (n=58)	Alectinib (n=64)			
CNS responders (%)	26	59			
CNS CR (%)	9*	45 [†]			
Median DoR, months (95% CI)	3.7 (3.2–6.8)	NE (17.3–NE)			

CNS Complete Response: Alectinib (45%) vs. Crizotinib (9%)

IRC RECIST. *Includes one patient who received prior brain radiotherapy and one patient who received concomitant radiotherapy; ¹Includes five patients who received prior brain radiotherapy and one patient who received concomitant radiotherapy Peters, et al. NEJM 2017

ALEX: Safety

Selected Adverse Events

	Crizotinib n=151		Alect n=1	inib 52	
N, (%)	Any grade	Grade 3–5	Any grade	Grade 3–5	
Constipation	49 (33)	0	52 (34)	0	
Nausea	72 (48)	5 (3)	21 (14)	1 (1)	
Diarrhoea	68 (45)	3 (2)	18 (12)	0	
Vomiting	58 (38)	5 (3)	11 (7)	0	
Peripheral edema	42 (28)	1 (1)	26 (17)	0	
ALT increased	45 (30)	22 (15)	23 (15)	7 (5)	
AST increased	37 (25)	16 (11)	21 (14)	8 (5)	
Arthralgia	11 (7)	0	3 (2)	0	
Myalgia	3 (2)	0	24 (16)	0	
Visual impairment	18 (12)	0	2 (1)	0	

*Two events in crizotinib and none in alectinib were reported as related to study treatment; †Roche data on file AE = adverse event; SD = standard deviation

Peters, et al. NEJM 2017; Shaw et al. ASCO 2017

Alectinib- first line treatment for ALK+

On November 6, 2017, the Food and Drug Administration granted regular approv Hoffmann La Docha Inc /Conontoch Inc.) for treatment of nationte with anaplac

ology - Life Sciences

Presente

[95% CI]

Whats next? To be presented at WCLC 2018

The choice of 1st line ALK- evidence based sequence or go with the best drug first?

ALK+ NSCLC: sequence of crizotinib followed by next generation inhibitor: MOS of 89.6 months

al. Oncotarget 2017; Gainor JF, et al. Clin Cancer Res 2015; Watanabe \$, et al. Clin Lung Cancer 2016

My index case

- 40 year old lady, healthy, never smoker
- 2013- Diagnosed with NSCLC, adenocarcinoma, mets to lung, bone, lymph nodes, EGFR and ALK pending
- Started chemotherapy- carboplatin and paclitaxel
- ALK positive!
- Started crizotinib after 4 cycles of chemo
- Complete response!

- 8 months later- dizziness, headache
- Diagnosed with multiple brain metastases
- Started whole brain radiotherapy
- Continue with crizotinib? Change to other ALK?
- After WB, the patient continued crizotinib
- PD in brain, with hydrocephalus
- Deceased 2 months after diagnosis of brain metastases
- Sometimes we only have 1 chance!

How about ROS1? Not much debate here yet...

Lorlatinib in non-small-cell lung cancer with *ALK* or *ROS1* rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial Shaw, Alice T et al. The Lancet Oncology, Volume 18, Issue 12, 1590 - 1599

- Of the 12 patients with *ROS1* -positive NSCLC, six (50%) achieved a confirmed partial response and two (17%) had stable disease
- Two patients had received previous crizotinib, and the other four patients were crizotinib naive but had received platinum doublet chemotherapy.
- Median duration of response was 12.0 months (95% CI 5.7–NR).
- Brigatinib, cabozantinib, enteractinib in advanced line of treatment show efficacy (very little evidence)
- Our experience shows prolonged survival with crizotinib- and 1 patient on the lorlatinib access program survived 4 years.

Summary- treatment of ALK +ive NSCLC

- ALK and ROS1rearrangement- mainly in non smokers with Adenocarcinoma
- Diagnosed mainly by IHC
- Crizotinib was the first ALK inhibitor- showed efficacy in 1st line with median OS of 5-7 years
- Alectinib-preferred drug for ALK in 1st line
- Alectinib, Ceritinib, Brigatinib demonstrated efficacy in 2nd line post crizotinib- no definite sequence yet-, but real world and prospective evidence are on the way...

Thank you!

