Management of HPV(+) Oropharyngeal cancer another entity?

Ilias Athanasiadis, MD Medical Oncologist Director of the Oncology Department MITERA Hospital, HYGEIA

Scientific Beretratin Diame Er. MD, Prof. Mutil Doğan, MD, Assoc. Prof. Turkish Society of Metical Decology Cumhuriyet Cad. Eren Apt. No: 81 K - 20 J: 51 madght:Assim/STANABU E-mail: Azlemer2005/sybaba.com mutudogenithyahao.com

Pin Congress Organization Koç Kulelari Sağûtozu Mah. Sağûtözü Cad. A Blok 2A/7 Çankaya - Ankara Phone: +00 312 870 19 52 Pax; +90 312 650 220 04 51 E-mail: icons@pinkongre.com

Pin CONCERNENT Organization Secreteria

Conflicts of interest

• No relevant conflicts of interest

Head and neck cancer

- Multiple primary sites, but uniformity in biology, etiology and clinical course
- Mostly squamous cell histology
- Tobacco, ethanol and viruses (EBV, HPV), the main causative factors

The global burden of endemic NPC

The geographical distribution of nasopharyngeal carcinoma Expert Reviews in Molecular Medicine © 2007 Cambridge University Press

SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE.

- incomg

Presented By Quynh-Thu Le at 2015 ASCO Annual Meeting

Human papillomavirus (HPV) genome organization.

Hellner K , Münger K JCO 2011;29:1785-1794

Human papillomavirus (HPV) infection of epithelial cells.

Hellner K , Münger K JCO 2011;29:1785-1794

Changing epidemiology of head and neck cancers

- Increasing incidence of HPV-related head and neck cancer sites
 - Canada (Auluck et al. Cancer, 2010)
 - Denmark (Blomberg et al. IJC, 2010)
 - Netherlands (Braakhuis et al. Oral Oncol, 2009)
 - Sweden (Hammarstedt et al. IJC, 2006)
 - USA (Chaturvedi et al. JCO, 2008)
 - UK (Conway et al. Oral Oncol, 2006)

Abst# 6004: Human papillomavirus (HPV) as a risk factor for the increase in incidence of tonsillar cancer and its effect on survival

H. Dahlstrand, L. Hammarstedt, D. Lindquist, W. Ye, T. Dalianis, E. Munck-Wikland

SCCHN...

"Human papillomavirus (HPV) as a risk factor for the increase in incidence of tonsillar cancer and its effect on survival.

- In Stockholm, 2.8 fold increase incidence 1970 – 2002
- 99/203 (49%) HPV ⊕
- E6 / E7 mRNA expressed in 94% of HPV 16 positive samples

Dahlstrand et al Abst 6004, ASCO 208

99/203: 49% HPV positive (1970-2003)

HPV16	HPV33	HPV35	HPV45	HPVX
86	3	1	1	8
(87%)	(3%)	(1%)	(1%)	(5%)

 HPV-16 E6 and/or E7 mRNA was expressed in 94% of assessable HPV-16 positive tonsillar cancer samples

Independent of age, gender and stage: Cox multivariate HR0.17 (95 % Cl 0.09-0.32)

Dehistrand, ct al. ASCO 2008

Higher survival rate in patients with HPV-positive tonsillar cancer in Stockholm

Proportion of all HNSCC that are oropharynx, U.S. 1973-2005

Chaturvedi A K et al. JCO 2008;26:612-619

Prevalence of High-Intensity Smoking, 1965-2007

Pierce, J. P. et al. JAMA 2011;305:1106-1112

Rising incidence for HPV-R HNSCC 1983-2002 (men)

 Increasing incidence for HPV-R and decreasing/stable incidence for HPV-U

Chaturvedi AK et al. In preparation

A male phenomenon

No increases in incidence for HPV-R HNSCC sites among women

and the second second

Original Article

Case-Control Study of Human Papillomavirus and Oropharyngeal Cancer

Gypsyamber D'Souza, Ph.D., Aimee R. Kreimer, Ph.D., Raphael Viscidi, M.D., Michael Pawlita, M.D., Carole Fakhry, M.D., M.P.H., Wayne M. Koch, M.D., William H. Westra, M.D., and Maura L. Gillison, M.D., Ph.D.

> N Engl J Med Volume 356(19):1944-1956 May 10, 2007

Representative Case of Oropharyngeal Squamous-Cell Carcinoma That Was Positive for HPV-16 on In Situ Hybridization

D'Souza G et al. N Engl J Med 2007;356:1944-1956

Association of Oropharyngeal Cancer with Exposure to HPV and with Biomarkers of Cancer Associated with HPV-16

Measure of HPV Exposure or Disease	Prev	alence	Odds Ratio (95% CI)		
	Case Patients (N=100)	Control Patients (N=200)	Unadjusted	Adjusted*	
	number	(percent)			
HPV-16 L1 serologic status					
Seronegative	43 (43)	186 (93)	1.00	1.00	
Seropositive	57 (57)	14 (7)	17.6 (8.8-34.5)	32.2 (14.6–71.3)	
Oral HPV-16 infection†					
Negative	68 (68)	192 (96)	1.00	1.00	
Positive	32 (32)	8 (4)	11.3 (5.0-25.7)	14.6 (6.3–36.6)	
Any oral HPV infection‡					
Negative	63 (63)	189 (94)	1.00	1.00	
Positive	37 (37)	11 (6)	10.0 (4.8–20.7)	12.3 (5.4-26.4)	
HPV-16 E6 or E7 serologic status					
Seronegative for E6 and E7	36 (36)	192 (96)	1.00	1.00	
Seropositive for E6 or E7	64 (64)	8 (4)	33.3 (16.2-68.6)	58.4 (24.2-138.3	
HPV-16 DNA in tumor					
Absent	28 (28)			—	
Present	72 (72)		_		

* Odds ratios were adjusted for age, sex, tobacco use, alcohol use, dentition and toothbrushing, and presence or absence of a family history of head and neck cancer.

- † Oral HPV-16 infection was detected with the use of a real-time PCR assay. The median number of cells analyzed for HPV DNA in case patients and control patients was similar (16,282 vs. 11,053 cells per 10-µl sample; P=0.11). The median HPV-16 viral load was 13.0 and 3.5 copies per 1000 cells among case patients and control patients who were positive for HPV-16, respectively.
- Infection of the oral cavity with any of 37 types of HPV was detected with the use of consensus-primer PCR. The HPV types detected, in order of prevalence, were 16 (23 patients), 72 (4 patients), 62 (3 patients), 58 (2 patients), 6 (2 patients), and 18, 31, 51, 55, 61, 66, 68, and 73 (1 patient each) among case patients and 58 (2 patients), 62 (2 patients), and 6, 42, 51, 56, 61, 66, 68, 73, and CP6108 (1 patient each) among control patients. Seven case patients and two control patients were infected with multiple types of HPV.

D'Souza G et al. N Engl J Med 2007;356:1944-1956

Conclusion

 Oral HPV infection is strongly associated with oropharyngeal cancer among subjects with or without the established risk factors of tobacco and alcohol use

Two distinct head and neck cancers

	HPV-positive	HPV-negative	
Anatomic site	Tonsil / BOT	All sites	
	Paranasal sinus		
	Larynx		
Histology	Basaloid	Keratinized	
Age	Younger	Older	
Gender	3:1 men	3:1 men	
SE status	High	Low	
Risk factors	Sexual behavior	Alcohol / tobacco	
Cofactors	Marijuana	Diet, hygiene	
Survival	Improved	Worse	
Incidence	Increasing	Decreasing	

Fig 1. Shown are incidence rates for oropharyngeal cancers among (A) men and (B) women, stratified by cohort year of birth (in 10-year overlapping groups) and age (in 5-years groups). Data were derived from nine cancer registries covered by the National Cancer Institute's SEER program (1973 to 2011). Oropharyngeal cancers include the base of tongue, lingual tonsil, soft palate, uvula, tonsil, oropharynx, and Waldeyer's ring.

Fig 2. Shown are male-female incidence rate ratios (RRs) for oropharynx cancers, stratified by age in rows (5-year groups) and calendar periods in columns (5-year groups). The diagonals across the age groups and calendar years represent birth cohorts. The scale for the color-coded RRs is also shown on the right. Data were derived from nine cancer registries covered by the National Cancer Institute's SEER program (1973 to 2011). Oropharyngeal cancers include the base of tongue, lingual tonsil, soft palate, uvula, tonsil, oropharynx, and Waldeyer's ring. HPV, human papillomavirus.

Fig 3. Shown are the associations of lifetime number of oral sex partners with oral human papillomavirus (HPV) prevalence among men (solid line) and women (dashed line) in the US population age 14 to 69 years. Data are based on the National Health and Nutrition Examination Survey (NHANES) 2009 to 2010 and 2011 to 2012 cycles. The shaded areas represent the 95% CIs. Reprinted by permission from the American Association for Cancer Research: Chaturvedi A, Graubard B, Broutian T, et al: NHANES 2009 to 2012 findings: Association of sexual behaviors with higher prevalence of oral oncogenic human papillomavirus infections in U.S. men. Cancer Res [epub ahead of print on April 14, 2015].

Fig 4. Shown are (A) the prevalence of 12 oral oncogenic human papillomavirus (HPV) types, (B) the number of individuals with prevalent infection with 12 oral oncogenic HPV types, and (C) the incidence rate per 100,000 of oropharyngeal cancer for ages 14 to 69 years in the US population. Oral HPV data are based on the National Health and Nutrition Examination Survey 2009 to 2010 and 2011 to 2012 cycles. Cancer incidence data are based on incidence rates in the year 2011 from nine cancer registries covered by the National Cancer Institute's SEER program (1973 to 2011). Oropharyngeal cancers include the base of tongue, lingual tonsil, soft palate, uvula, tonsil, oropharynx, and Waldeyer's ring.

Oral HPV precedes oropharyngeal cancer

Table 2. Associations of HPV-16, High-Risk Oncogenic HPVs, and Other a-HPV Types With Overall Risk of Incident HNSCC and Tumor Subtypes

	Participants, No. (%)		Adjusted Model ^a	
a-HPV Type	Cases	Controls	OR (95% CI) ^a	P Value
All HNSCCs	n = 132	n = 395 ^b		
HPV-16	12 (9.1)	7 (1.8)	7.07 (2.22-22.55)	.001
High-risk HPVs excluding HPV-16 ^c	6 (4.5)	20 (5.1)	0.82 (0.27-2.48)	.72
Non-high-risk HPV types	20 (15.2)	38 (9.6)	1.78 (0.90-3.50)	.10
Any a-HPV	32 (24.2)	55 (13.9)	2.25 (1.27-4.01)	.01
Oropharynx cancer	n = 25	n = 75		
HPV-16	5 (20.0)	1 (1.3)	22.41 (1.81-276.7)	.02
High-risk HPVs excluding HPV-16 ^c	1 (4.0)	3 (4.0)	0.90 (0.07-11.17)	.93
Non-high-risk HPV types	5 (20.0)	11 (14.7)	1.61 (0.48-5.43)	.44
Any a-HPV	9 (36.0)	13 (17.3)	2.69 (0.91-7.94)	.07
Oral cavity cancer	n = 43	n = 127		
HPV-16	6 (14.0)	2 (1.6)	4.51 (0.59-34.73)	.15
High-risk HPVs excluding HPV-16 ^c	1 (2.3)	9 (7.1)	0.51 (0.06-4.26)	.53
Non-high-risk HPV types	6 (14.0)	9 (7.1)	1.93 (0.54-6.85)	.31
Any a-HPV	12 (27.9)	18 (14.2)	1.93 (0.70-5.31)	.20
Larynx cancer ^d	n = 64	n = 193		
HPV-16	1 (1.6)	4 (2.1)	0.11 (0.01-834.8)	.63
High-risk HPVs excluding HPV-16 ^c	4 (6.3)	8 (4.2)	0.91 (0.16-5.12)	.91
Non-high-risk HPV types	9 (14.1)	18 (9.3)	3.15 (0.95-10.43)	.06
Any a-HPV	11 (17.2)	24 (12.4)	2.46 (0.83-7.27)	.10

Gillison et al. JAMA 2012

Agalliu et al. Jama Oncol 2016

IOHNS HOPKINS

Presented By Carole Fakhry at 2017 ASCO Annual Meeting

Original Article

Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer

K. Kian Ang, M.D., Ph.D., Jonathan Harris, M.S., Richard Wheeler, M.D., Randal Weber, M.D., David I. Rosenthal, M.D., Phuc Felix Nguyen-Tân, M.D., William H. Westra, M.D., Christine H. Chung, M.D., Richard C. Jordan, D.D.S., Ph.D., Charles Lu, M.D., Harold Kim, M.D., Rita Axelrod, M.D., C. Craig Silverman, M.D., Kevin P. Redmond, M.D., and Maura L. Gillison, M.D., Ph.D.

> N Engl J Med Volume 363(1):24-35 July 1, 2010

Study Overview

- Human papillomavirus (HPV)-associated oropharyngeal squamous-cell carcinoma differs from oropharyngeal cancers caused by tobacco and other factors
- In this study, patients with oropharyngeal cancer were treated with cisplatin plus radiation therapy; the 3-year rate of overall survival was 82.4% among patients with HPV-positive tumors and 57.1% among patients with HPVnegative tumors
- HPV status is an independent prognostic factor for survival among patients with oropharyngeal squamouscell carcinoma

Kaplan-Meier Estimates of Survival among the Study Patients with Oropharyngeal Cancer, According to Tumor HPV Status or p16-Expression Status

Ang KK et al. N Engl J Med 2010;363:24-35

Conclusion

 Tumor HPV status is a strong and independent prognostic factor for survival among patients with oropharyngeal cancer

Oropharynx: Classification of patients into risk-of-death categories

Recursive-partitioning analysis identified prognostic factors with the most predictive significance

Ang KK, et al. NEJM

Effect of p16 and tobacco use on OS and PFS for oropharynx cancer in RTOG 9003

ML Gillison, Q Zhang, KK Ang, KK Fu, ME Hammond, R Jordan, A Trotti, S Spencer, M Rotman, CH Chung on behalf of the Radiation Therapy Oncology Group

The Ohio State University, RTOG Statistical Center, University of Texas M.D. Anderson Cancer Center, LDS Hospital, University of California San Francisco, H. Lee Moffitt Cancer Center & Research Institute, University of Alabama at Birmingham Medical Center, SUNY Health Science Center Brooklyn, Vanderbilt University Medical Center.

Radiation Therapy Oncology Group 9003

R

A

Ν

D

0

Μ

Ζ

Е

<u>Arm 1</u>: Standard Fractionation

<u>Arm 2</u>: Hyperfractionation

<u>Arm 3</u>: Accelerated

Fractionation with split

<u>Arm 4</u>:

- Accelerated
- Fractionation by
- **Concomitant Boost**

Overall Survival by p16 status

www.rtog.org

HPV status and tobacco use in 9003 and 0129

Calendar time

*test of proportions *median test

www.rtog.org

Percent HPV-positive cases

A decade makes a huge difference Overall survival, RTOG 0129 vs. 9003

Guideline statements

 NCCN guidelines: "HPV testing recommended for all oropharynx tumors"

 National Cancer Institute US, CTEP: "HPV status must be included as stratification factor for trials including oropharynx cancer patients"

• U.S Cooperative Groups and European Organization for Research and Treatment of Cancer: "HPV-positive oropharynx cancer is a distinct disease entity"

Implications for treatment of HPV-associated HNSCC

- Guidelines do not currently recommend using HPV status to direct treatment
- However, strategies to treat HPV+ LA-SCCHN have been proposed that take advantage of its tendency to respond to treatment, and are being investigated

HPV-associated HNSCC is a distinct molecular-genetic entity

Wilczynski, AM J Pathol 1998; Andl, Cancer Research 1998; Klussman, AM J Pathol. 2003: Balz, Cancer Research, 2003; Wiest, Oncogene, 2002

Gene expression profiles: HPV-positive vs. HPVnegative tumors

89 genes with higher expression 2 genes with lower expression

Slebos R, et al. Clin Cancer Res, 2006

CD8 T cell infiltration differs between HNC subtypes.

Michaela K. Keck et al. Clin Cancer Res 2015;21:870-881

Session: Changes in Head and Neck Cancer Staging: It's personal

"HPV Associated Oropharynx Cancer: New Staging for a New Disease"

Brian O'Sullivan

Professor, Department of Radiation Oncology The Princess Margaret / University of Toronto

Chair, UICC Prognostic Factors Classification Committee UICC Liaison to the AJCC Head and Neck Expert Committee

#ASCO18 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Brian O'Sullivan

Friday June 1, 2018 (1:00-2:25 PM)

Presented By Brian O"Sullivan at 2018 ASCO Annual Meeting

8th edition TNM:

Recognition of a new disease Introduction of a new classification (HPV+ OPC & HPV+ CUP)

HPV-Mediated (p16+) Oropharyngeal Cancer

Brian O'Sullivan, William M. Lydiatt, Bruce H. Haughey, Margaret Brandwein-Gensler, Christine M. Glastonbury, and Jatin P. Shah

Cervical Lymph Nodes and Unknown **6** Primary Tumors of the Head and Neck

Snehal G. Patel, William M. Lydiatt, John A. Ridge, Christine M. Glastonbury, Suresh K. Mukherji, Ronald A. Ghossein, Margaret Brandwein-Gensler, Raja R. Seethala, A. Dimitrios Colevas, Bruce H. Haughey, Brian O'Sullivan, and Jatin P. Shah

G #ASCO18 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Brian O'Sullivan

Why Do We Need a New TNM for HPV+ OPC

- HPV+ and HPV– OPCs are two different diseases with different:
 - Etiology and biology¹⁻²
 - Clinical behavior³
 - Radiology appearances⁴⁻⁵
 - Pathology features¹
 - Treatment response⁶⁻⁷ and outcomes⁸⁻⁹
- Up to TNM 7th edition, we used the same stage classification for both diseases

¹Gillison, JNCI, 2000; ²Seiwert Nature 2015; ³Huang IJROBP 2012; ⁴Goldenberg, HN 2008; ⁵Cantrell, AJNR Am J Neuroradiol 2013; ⁶Chen Laryngoscope 2013; ⁷Huang IJROBP 2013; ⁸Ang NEJM 2010; ⁹O'Sullivan JCO 2013 Service results and the servic

⁷Ang NEJM 2010

⁸O'Sullivan JCO 2013

PRESENTED AT: 2018 ASCO ANNUAL MEETING

#ASCO18 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Brian O'Sullivan

Presented By Brian O"Sullivan at 2018 ASCO Annual Meeting

OS by 7th edition TNM Stage Groups [PMH Data 2000-2010]

PRESENTED AT: 2018 ASCO ANNUAL MEETING

G where the second seco

PRESENTED BY: Brian O'Sullivan

Presented By Brian O"Sullivan at 2018 ASCO Annual Meeting

HPV+ OS by 7th T- & N-category [multi-institutional dataset] (n=1907)

• T: T1, T2, T3, and T4 separate well; T4a and T4b behave similarly

N: inferior OS in N2c and N3; Similar OS between N0 / N1-N2a and N2b

THE LANCET Oncology

Presented By Brian O"Sullivan at 2018 ASCO Annual Meeting

Comments About HPV+ cTNM

 The 8th edition HPV+ cTNM reflects prognosis under current treatment paradigms

- But many had received intensified treatment
- Stage | disease fares very well
 - Unknown if all stage I is suitable for less intensified treatment
 - Uncertainty also about the optimal deintensification strategies

Stage I can be considered candidates for de-intensification trials

Pre-mature to change treatment without trial data

PRESENTED BY: Brian O'Sullivan

Presented By Brian O"Sullivan at 2018 ASCO Annual Meeting

Impact of prophylactic HPV vaccination on oral HPV infections among young adults in US

Maura L Gillison, Barry I. Graubard, Tatevik Broutian, Robert K.L. Pickard, Zen-Yue Tong, Weihong Xiao, Lisa Kahle, Anil K. Chaturvedi

> ASCO June, 2017

Making Cancer History[®]

Presented By Maura Gillison at 2017 ASCO Annual Meeting

HPV-positive oropharyngeal cancer

- Fastest rising cancer in young white US men
- >90% caused by HPV16

HPV vaccination recommended

- Since 2006: Ages 9-26 in women
- Since 2011: Ages 9-21 years in men (26 for MSM)
- Oral HPV infection and precancer/cancer not an indication

Impact of HPV vaccination, US 2011-14, 18-33 years

Outcome	Vaccinated N=496 / 11,310,006	Unvaccinated N=2,131 / 50,516,709	P Value	% Reduction
HPV16/18/6/11 Infections Prevalence	1 0.11%	32 1.61%	0.008	88
Men only Infections Prevalence	0 0.00%	23 2.13%	0.007	100
Men only, HPV16 Infections Prevelance	0 0.00%	13 1.12%	0.07	100

Binary logistic regression models adjusted for age, gender and race

Chaturvedi and Gillison, submitted

Opportunity to reduce oral HPV infections; low vaccination for men

Presented By Carole Fakhry at 2017 ASCO Annual Meeting

Largest burden of HPV-related malignancy for men in oropharynx cancer in US

Jemal, JNCI 2013

Presented By Carole Fakhry at 2017 ASCO Annual Meeting

If You Could Prevent Cancer, Would You?

HPV is preventable

HPV or human papillomavirus is passed from person to person during direct skin-to-skin contact, particularly during sexual activity.

GARDASIL 9

This vaccine protects against strains 16 and 18, which are most likely to cause cancer, and 5 additional strains linked with cancer.*

*Other vaccines may be used outside the US.

The Centers for Disease Control (CDC) recommends HPV vaccination for:

HPV IS LINKED

VACCINATED

Only 36% of girls and 14% of boys ages 11-13 are fully vaccinated.

Getting the HPV vaccine could save:

9 OUT OF 10 MEN AND WOMEN FROM ANAL CANCER

8 OUT OF 10 WOMEN FROM VAGINAL CANCER

Men don't need to worry about HPV, right? Wrong. HPV affects men and women. In fact, oropharyngeal cancer from HPV is 3 to 5 times more common in men.

The HPV vaccine is a series of 2 or 3 shots.

Nivolumab and ISA101 Vaccine in Patients with Incurable HPV-16+ Cancer

Bonnie Glisson¹, Erminia Massarelli², William William¹, Faye Johnson¹, Merrill Kies, Renata Ferrarotto¹, Ming Guo¹, S. Andrew Peng¹, J. Jack Lee¹, Hai Tran¹, Young U. Kim¹, Cara Haymaker¹, Chantale Bernatchez, Michael Curran¹, Beatriz Sanchez Espiridion¹, Jaime Rodriguez Canales¹, Ignacio Wistuba,^{1r}Sjoerd van der Burg³, Jing Wang¹, Cornelis J. Melief³. ¹

UT MD Anderson Cancer CTR, Houston, TX; ²City of Hope, Duarte, CA; ³Leiden University Medical Center, Leiden, Netherlands

Abstract 11360

Making Cancer History®

HPV⁺ tumor microenvironment is immunosuppressive

Original Article

Vaccination against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia

Gemma G. Kenter, M.D., Ph.D., Marij J.P. Welters, Ph.D., A. Rob P.M. Valentijn, Ph.D., Margriet J.G. Lowik, Dorien M.A. Berends-van der Meer, Annelies P.G. Vloon, Farah Essahsah, Lorraine M. Fathers, Rienk Offringa, Ph.D., Jan Wouter Drijfhout, Ph.D., Amon R. Wafelman, Ph.D., Jaap Oostendorp, Ph.D., Gert Jan Fleuren, M.D., Ph.D., Sjoerd H. van der Burg, Ph.D., and Cornelis J.M. Melief, M.D., Ph.D.

> N Engl J Med Volume 361(19):1838-1847 November 5, 2009

Study Overview

- In this single-group study involving women with grade 3 vulvar intraepithelial neoplasia associated with human papillomavirus type 16 (HPV-16), vaccination against HPV-16 infection with a peptide vaccine was related to a clinical response in 15 of 19 patients (79%) at 1 year
- This clinical response was associated with induction of HPV-16-specific T cells

Complete Clinical Response to Vaccination in a Patient with Grade 3 Vulvar Intraepithelial Neoplasia

Kenter GG et al. N Engl J Med 2009;361:1838-1847

Immune Response before and after Vaccination

Kenter GG et al. N Engl J Med 2009;361:1838-1847

Rationale

Phase II Nivolumab + ISA101

ISA 101 synthetic long peptide (SLP) HPV E6/E7 vaccine

- Regression of high-grade premalignant vulvar lesions in 15/19 patients at 12 months; 9/19 no evidence of disease at 24 months
 - Strong IFNγ, HPV16-specific immunity in complete responders (*Kenter et al NEJM 2009*)
- ISA101 induces strong and durable HPV-specific T cell responses, but does not cause regression of invasive HPV-associated cancer (Van Polgeest CCR 2016, Welters et al STM 2016, Gerritsen et al ASCO abstract 5525, 2017)
- <u>Combination with immune checkpoint inhibition could overcome limitations imposed by immunosuppressive tumor</u> <u>microenvironment</u>

Presented by Bonnie Glisson at 2017 ESMO Congress

Study Schema and Assessments

Phase II Nivolumab and ISA101

W=week; PD=disease progression

- ISA101 administered s.q. at 100 mcg/peptide for 3 doses, q 3 -4 wks
- Nivolumab administered i.v. 3 mg/kg every 2 weeks beginning on day 8 until PD, toxicity, or 1 yr tx
- Imaging: baseline, prior to cycle 6 nivolumab, q 6 wks thereafter
- Biopsies: baseline, restaging
- Blood: baseline, pre-vaccine doses 2 and 3, prior to nivolumab C5 and C6, then q 3 mos.

Presented by Bonnie Glisson at 2017 ESMO Congress

Percentage Change in Target Lesions

Phase II Nivolumab and ISA101

Baseline

s/p 11 mos tx

Acc. 5

Baseline

.

s/p 8 mos tx

Acc. 9

Baseline

s/p 5 mos tx

Conclusion

- HPV infection is a causative factor in head and neck cancer carcinogenesis
- An epidemic of sexually transmitted HPV oral infection has shifted the epidemiology of oropharyngeal cancer in a major way
- Identification of specific biologic characteristics of HPV related oropharyngeal cancer creates opportunities for individualzed therapy in HNC
- Prevention of HPV infection by vaccination could prevent many HPV related cancers and represents a challenge for Preventive Medicine

Presented By Brian O"Sullivan at 2018 ASCO Annual Meeting
N Category	N Criteria	
NX	Regional lymph nodes cannot be assessed	
NO	No regional lymph node metastasis	
N1	Metastasis in a single ipsilateral lymph node, ≤ 3 cm in greatest dimension and ENE-	
N2	Metastasis in a single ipsilateral lymph node > 3 cm but not > 6 cm in greatest dimension and ENE-; or metastases in multiple ipsilateral lymph nodes, none > 6 cm in greatest dimension and ENE-; or in bilateral or contralateral lymph nodes, none > 6 cm in greatest dimension, ENE-	
N2a	Metastasis in single ipsilateral node > 3 cm but not > 6 cm in greatest dimension and ENE-	
N2b	Metastasis in multiple ipsilateral nodes, none > 6 cm in greatest dimension and ENE-	
N2c	Metastasis in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension and ENE-	
N3	Metastasis in a lymph node more than 6 cm in greatest dimension and ENE-; or metastasis in a single ipsilat- eral node ENE+; or multiple ipsilateral, contralateral, or bilateral nodes any with ENE+	
N3a	Metastasis in a lymph node > 6 cm in greatest dimension and ENE-	
N3b	Metastasis in a single ipsilateral node ENE+ or multiple ipsilateral, contralateral or bilateral nodes any with ENE+	
Abbreviations: ENE, extranodal extension; HPV, human papillomavirus; OPC, oropharyngeal		
cancer.		
Reproduced with permission from AJCC Manual on Staging, eighth edition.		

TABLE 2. Regional Lymph Nodes Clinical Category Criteria (cN) Except Nasopharyngeal and High-Risk HPV+ OPC

Fublished M. William Lydiatt; Brian O'Sullivan; Snehal Patel; *American Society of Clinical Oncology Educational Book* 38, 505-514 DOI: 10.1200/EDBK_199697 Convright © 2018 American Society of Clinical Oncology

N Category	N Criteria	
NX	Regional lymph nodes cannot be assessed	
NO	No regional lymph node metastasis	
N1	Metastasis in a single ipsilateral lymph node, ≤ 3 cm in greatest dimension and ENE–	
N2	Metastasis in a single ipsilateral lymph node > 3 cm but not > 6 cm in greatest dimension and ENE-; or metastases in multiple ipsilateral lymph nodes, none > 6 cm in greatest dimension and ENE-; or in bilateral or contralateral lymph nodes, none > 6 cm in greatest dimension, ENE-	
N2a	Metastasis in single ipsilateral node > 3 cm but not > 6 cm in greatest dimension and ENE-	
N2b	Metastasis in multiple ipsilateral nodes, none > 6 cm in greatest dimension and ENE–	
N2c	Metastasis in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension and ENE-	
N3	Metastasis in a lymph node more than 6 cm in greatest dimension and ENE-; or metastasis in a single ipsilat- eral node ENE+; or multiple ipsilateral, contralateral, or bilateral nodes any with ENE+	
N3a	Metastasis in a lymph node > 6 cm in greatest dimension and ENE-	
N3b	Metastasis in a single ipsilateral node ENE+ or multiple ipsilateral, contralateral or bilateral nodes any with ENE+	
Abbreviations: ENE, extranodal extension; HPV, human papillomavirus; OPC, oropharyngeal		
cancer.		
Reproduced with permission from AJCC Manual on Staging, eighth edition.		

TABLE 2. Regional Lymph Nodes Clinical Category Criteria (cN) Except Nasopharyngeal and High-Risk HPV+ OPC

Published in: William Lydiatt; Brian O'Sullivan; Snehal Patel; American Society of Clinical Oncology Educational Book 38, 505-514. DOI: 10.1200/EDBK_199697 Copyright © 2018 American Society of Clinical Oncology

